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E. N. Peters, D. D. Stewart, J. J. Bohan, D. W. McNeil

Unton Carbide Corporation
Chemicals and Plastics
Bound Brook, NJ 088065

Tarrytown Technical Center
Tarrytown, NY 10691

Do-m-CARBORANE-SILOXANES. VI. OXIDATIVE STABILIZATION OF
VULCANIZATES WITH FERRIC OXIDE

ABSTRACT: Ferric oxide produced from iron pentacarbonyl
was evaluated as an oxidative stabilizer in Dy-m-carborane-
siloxane and polydimethylsiloxane vulcanizates. The
results indicate a significant improvement in efficiency
compared to powdered ferric oxide. Thus a carborane-
siloxane vulcanizate retained elastomeric properties after
1000 hours in air at 315°.

The practical uppor use temperature for carborane-
siloxane vulcanizates bla evaluated by heat aging samples
at 340° ana 370%. ' -




INTRODUCTION

The thermal aging of conventional polydimethylsiloxanes
in air has been represented as a cross-linking oxidation re-
action.l The mechanism of this oxidation is believed to
be a diverging, free-radical chain reaction, initiated by
direct attack of oxygen on the methyl groups of the siloxane
polymet.1'2 This increase in cross-link density of silicone
vulcanizates during thermal aging in air leads to a loss of

useful properties.

i i
=G i=-0—v~ ar=Si=0—~

('283 + 02 ——p (:)

CHq ~—=Si=0=~
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CH,

Stabilizers and antioxidants are important in elastomer

formulations.3 Iron and other redox metal compounds are used

to stabilize polydimethylsiloxanes in order to prolong their
service life.‘ The stabilizing by ferric oxide has been
postulated to occur by the destruction of the propagating

species, R®, of a free radical chain reaction.

*3 .8 ——s g*+re*?




The incorporation of the decacarborane moiety into the
siloxane backbone significantly enhances the thermal stabil-

it:y.fl’-8 This paper describes investigations on the thermal

and thermo oxidative stability and use of ferric oxide stabi-
lizers in carborane-siloxanes. Furthermore, Neale and Pines
have reported an improved preparation of ferric oxide from
iron pentacarbonyl which is apparently soluble in silicone
oils and results in better antioxidant efficiencies.’

Fe(CO)5 + o2 165° Fe203

This soluble ferric oxide has been evaluated in carborane-
siloxanes and polydimethylsiloxane vulcanizates, and found

to be highly efficient in stabilizing these elastomers.

EXPERIMENTAL

Linear, high molecular weight stocks were prepared by

the reaction of bis~ureidosilanes with carborane disilanol.

7,10

This technique has been described elsewhere. D,-m-carbo-

rane~dimethyl/diphenylsiloxane (67/33 mole %) was used in these
studies. Compounding and vulcanization are similar to standard

silicone conditionu."ll Dicumyl peroxide was used as the
curing agent. The cure cycle was 125°C for 20 minutes and
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15/°C for 30 minutes, followed by post cure at 180°-200°C for
18 hours, then 12 hours at 315°C. The polydimethylsiloxanes
were post cured only at 180-200°C. Heat aging studies were
carried out in an air circulating oven.

Soluble Ferric Oxide

Incorporation of soluble ferric oxide into stocks was

carried out in a well ventilated fume hood by cautiously adding,

via syringe, iron pentacarbonyl to a hot solution of the stock
in a suitable solvent (tetrahydrofuran, chlorobenzene, o-di-
_‘f: chlorobenzene, etc). Evaporation of the solvent and simul-
taneous air oxidation of the iron pentacarbonyl results in
polymer containing soluble ferric oxide. Vacuum drying re-
moves traces of solvent and leaves a reddish transparent poly-
mer which was suitable for compounding and curing. The iron
content was determined by atomic absorbtion after ashing. Up
to 50% of the iron pentacarbonyl was converted in solution to
ferric oxide.

RESULTS AND DISCUSSION

Carborano-slloxano polymers exhibit excellent thermal
stability as measured by thermal gravimetric analyais.‘
However, it was desired to gain an understanding of the thermal
stability of vulcanizates and define a time-temperature profile.
Heat Aging at 313°C
Vulcanizates with and without powdered ferric oxide were
heat aged in air and nitrogen at 315°C. The results appear

in Tables I and II.




In air, the specimens without ferric oxide undergo rapid
oxidative cross-linking. After 150 hours at 315°C the modulus
increases from 530 to 154,000 psi, the tensile strength in-
creases from 510 to 1,490 psi and the elongation at break de-

creases from 100 to 1%. This cross-linking is corroborated by

the volume change in benzene.

:’i The samples containing powdered ferric oxide exhibit much
g less tendency to cross-link during heat aging in air at 315°C.
For example, after 150 hours the modulus increases from 533 to
1800 psi, the elongation at break decreases from 100 to 45%,
and the tensile strength shows no significant change. Thus,
ferric oxide is an effective oxidative stabilizer for carbo-
rane-siloxanes.

In nitrogen both samples during heat aging exhibit a de-~
crease in modulus, tensile strength, and elongation at break.
These results indicate that the vulcanizates are undergoing
bond cleavage during heat aging. This is corroborated by the
increased swelling in benzene.

Decomposition in nitrogen is attributed to the cleavage
of the cross~link moieties on the polymer backbone. A key

experiment was performed in which Dz-catborane-siloxane stock

] was heat aged in nitrogen at 315°C for 150 hours. The molecular
weight (FMw) after heat aging (192,000) was almost identical
| to the molecular weight before heat aging (198,000). Clearly,

~ the stock backbone is not undergoing any significant amount
b o_t W elma at 3:5}:}. m loss of mechanical properties
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observed by heat aging vulcanizates in nitrogen must be due
to thermal breaking of cross-link bonds.

The property change occurring in air at 315° must be the
result of a combination of thermal cleavage of cross-link moieties
and oxidative bond forming reactions.

Heat Aging at 340° and 370°C

To define the practical upper use temperature for D,-
carborane-siloxane, vulcanizates were aged in air at 340° and
370°C. The results appear in Tables III and IV. There is a
more rapid loss of mechanical properties at 340° and 370°C
than at 315°C. The property changes are consistant with in-
creased cross~linking during heat aging.

Heat aging D,-carborane~siloxane stock in nitrogen for
24 hours at 340°C resulted in partial thermal cross-linking as
indicated by the reduced solubility in chloroform and other
good solvents. At 370° the stock is totally cross-linked. These
results suggest that at these temperatures the carborane-siloxane
is undergoing bond formation reactions at a faster rate than
bond cleavage.

Conventional silicones undergo reversion reactions under
these conditions.

Solub ric Oxide

Soluble ferric oxide is a highly effective oxidative sta-
bilizer for silicones. The effectiveness of soluble ferric ox-
ide wvas ceiylud nﬂnlt Mnd ferric oxide in carborane-sil-
oxane m sates. w« eonumlng 0.25 phr soluble ferric
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oxide and 0.25 phr powdered ferric oxide were heat aged in air
at 315°C up to 1000 hours. The results appear in Table V.

After 50 hours the sample with 0.25 phr powdered ferric
oxide became very rigid. The modulus increased from 508 to
141,000 psi and the elongation at break decreased from 190
to 2%. At a 0.25 phr level, powdered ferric oxide is not an
effective stabilizer. At the 2.5 phr level it is effective
(Table I).

However, with 0.25 phr soluble ferric oxide, the sample
retained most mechanical properties after 1000 hours at 315°C.
The modulus increased from 536 to 3300 psi, the tensile strength
remained essentially constant, and the elongation at break
decreased from 220 to 15%. This clearly demonstrates the superior
efficiency of soluble ferric oxide as an oxidative stabilizer

for carborane-siloxanes.

Polydimethylsiloxane
The usefulness of soluble ferric oxide has been demons-

trated in silicone fluids and carborane-siloxane vulcanizates.
Its effect in polydimethylsiloxane vulcanizates was studied.
Samples éontaining 0.25 phr powdered and soluble ferric oxide
were heat aged in air. The data appear in Table VI.

The sample with powdered ferric oxide showed a rapid loss
of properties after 25 hours at 315°. The sample with soluble
ferric oxide exhibited a much better retention of properties.
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CONCLUSIONS

Ferric oxide is an effective oxidative stabilizer for
carborane~siloxanes. The use of soluble ferric oxide results
in a substantially improved efficiency for stabilization for
carborane~siloxanes and polydimethylsiloxanes. 1Indeed a car-
borane-siloxane sample retained properties after 1000 hours
at 315°C in air.
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TABLE 1

MECHANICAL PROPERTIES AT 25°C

AFTER HEAT AGING IN AIR AT 315°C2

Aging “Young's Tensile “Elongation “Volume
time, modulus, strength, at break, change,
hrs psi psi % ]
No ferric oxide
0 530 510 100 91
25 1170 365 50 85
50 1529 470 40 70
75 3190 35¢ 20 65
150 154,000 1490 1 20
ferric oxide, 2.5 phr®
0 533 513 100 88
25 922 442 60 94
50 1117 427 55 65
75 1311 485 50 67
150 1813 533 45 68
TABLE II
MECHANICAL PROPERTIES AT 25°C 5
APTER HEAT AGING IN NITROGEN AT 315°C
Aging Young's Tensile ~ Elongation Volume
time, modulus, strength, at break, change,
hrs psi psi ) %
No ferric oxide
0 530 510 100 91
25 457 2717 75 105
150 246 180 60 112
ferric oxide, 2.5 phr
0 533 613 100 88
25 470 520 80 110
50 450 420 60 105
75 420 300 50 104
100 400 200 40 107

& polymer 100, Tullanox 500 30, dicumyl peroxide 2.5.

b ASTM test method D471-72; immersed seven days in bensene
at room temperature.

. ‘Mechanical properties from reference 7.
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TABLE III

MECHANICAL PROPERTIES AT 25°C
AFTER HEAT AGING IN AIR AT 343°c®

11

Aging Young's “Tensile Elongation
time, modulus, strength, at break,
hrs psi psi %
0 430 740 220
4 460 739 125
16 952 503 50
24 1140 293 30
TABLE 1V
MECHANICAL PROPERTIES AT 25°C
AFPTER HEAT AGING IN AIR AT 371°C
Rging Young's “Tensile Elongation
time, modulus, strength, at break,
hrs _psi psi : $
0 430 740 220
4 15,600 839 15
16 b
a

and dicumyl peroxide 2.5.

Too brittle to measure.

Polymer 100, Tullanox 500 30, Powdered ferric oxide 2.5,
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TABLE V

EFFECT OF FERRIC OXIDE ON MECHANICAL PROgERTIBS (25°C)

AFTER HEAT AGING IN AIR AT 315°C

Aging Young's ~ Tensile "Elongation
time, modulus, strength, at break,
hrs psi psi %
Powdered ferric oxide, 0.25 phr
0 508 517 190
50 141,000 1880 2
100 243,000 2050 1
300 Too brittle to measure
Soluble ferric oxide, 0.25 phr
0 536 527 220
50 712 434 165
100 855 581 80
300 1240 470 50
600 2000 500 35
1000 3300 | 457 15
a

Polymer 100, Tullanox 500 30, dicumyl peroxide 1.5.
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TABLE VI

PROPERTIES OF POLYDIMETHYLSILOXANE AT 25°C
AFTER HEAT AGING IN AIR AT 315°C?

| 8 Aging ~Young's Tensile Elongation Volume
} . time, modulus, strength, at break, change,
hrs psi psi $

b

Powdered Ferric oxide, 0.25 phr

0 348 820 450 160
25 3022 567 25 53
50 3480 539 20 45
: 75 4700 522 12 35
\ 3 150 7500 780 2 10
: 300 » too brittle to measure -
h j; : ' Soluble ferric oxide, 0.25 phr
| § 0 333 704 400 196
: 25 438 286 180 132
50 661 496 90 : 116
75 840 300 50 107
150 1080 482 40 97
300 1833 ‘ 607_ 12 40

2 polymer 100, Tullanox 500 30, dicumyl peroxide 2.5.

b

ASTM test method D471-72; immersed seven days in benzene
at room tml.ﬁ“.o
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